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Summary-Considerable progress was made in developing artificial neural netwo-,rk rnt'thd'
for solving stochastic sequential ipcisilnn pr:blems. Our research focused on reinforcement
learning methods based on approximating dynamic programming (DP). We used prblems
in the domains of robot fine motion control, navigation, and steering control in ,rdelr t,

develop and test learning algorithms and architectures. Although most of these pr,,blems

were simulated, we also began to apply DP-based learning algorithms to actual robot rout rol
problems with considerable success. Progress was made on reinforcement learning methi,,ds

using continuous actions, modular nct,,crk architectures. and architectures using abstract
actions. Theoretical progress was rr ade in relating DP-based reinforcement learning algo-

rithms to more conventional methods for solving stochastic sequential decision problems. As

a result of this research, we have a much improved understanding of these algorithms and
hnw they can be successfully used in applications.

1 Introduction

F)llowing is the summary of the research proposal that led to funding of the research
being reported here. It states the research objectives.

This project seeks to develop learning methods for artificial neural networks
(or connectionist networks) for application to problems formalized as stochas-

hC sequential decision problems. In these problems the consequences of network

actions unfold over an extended time period after an action is taken, so that
actions must be selected on the basis of both their short-term and long-term
consequences and under uncertainty. Problems of this kind can be viewed as
discrete-time stochastic control problems. The theory of stochastic sequential
decision making and the computational techniques associated with it, known as

stochastic dynamic programming, provide ways of understanding the capabili-
ties of the reinforcement-learning and temporal credit-assignment methods we
previously developed and suggest a variety of extensions to them which can be
irnplem-nted as adaptive networks. These extensions involve model-based and
hierarchical learning. The long-term goal of this research is the development

I



Of network methods for the efficient solution of stochastic sequential ro1cii,,II
problems in the absence o)f cnmpleto knowledge of underlying dynarnmi

We made considerable progress in furthering the development of DP-based reirf,,r,--irut
learning algorithinms and in understanding their properties and domains ,f uility jt ,v13,Nk we,
describe our major accomplishments. Some aspects of this project were closel\y rlaTed l,
research funded under National Science Foundation Grant E('S-8912623.

2 Reinforcement Learning of Continuous Values

Part of our rcscarch addicssed methods for allowing networks with continuous outputs I(.
learn via reinforcement learning. Although this work did not explicitly rely on the formalism
of sequential decision problems, it addressed a capability that learning systems must have for
a wide range of such problems. Whereas most reinforcement learning systems are restricted to

a finite set of actions, many sequential decision problems require learning over a continuous
range of actions. Our effort focused on Stochastic Real-Valued (SRV) units, which are
neuron-like units with real-valued outputs that can be trained via reinforcement feedback.
SRV units were developed by V. Gullapalli with support from this grant and formed the
basis of his Ph.D. dissertation (he received the Ph.D. in 1992). We conducted a number of
experiments using SRV units in a simulated pole-balancing task and control of a simulated
three degree-of-freedom robot arm in an underconstrained positioning task. Results indicated
that networks using SRV units can learn these tasks faster than networks based on supervised

learning. Gullapalli has published a journal article, several conference papers, and a b,,.,ok
chapter on this work.

Gullapalli also used SRV units in a neural network model of perception by training
a network with SRV units to model area 7a of the posterior parietal cortex, a cortical
area thought to transform visual stimuli from retinotopic coordinates into a head-centered
coordinate system [5l. Results showed that the SRV network reproduces the performance
of previous models while being free of some of their limitations with respect to biological

plausibility.

Based on the promise shown by these simulations, we applied a network using SRV
units to the problem of robot peg in-hole insertion using a robot arm (a Zebra Zero). We
achieved very promising results, described in refs. [7; 61. This task is important in industrial
robotics and is widely used by roboticists for testing approaches to robot control. Real-world
con(litions of uncertainty and noise can substantially degrade the performance of traditional
control methods. Sources of uncertainty and noise include (1) errors and noise in sensations.
(2) errors in execution of motion commands, and (3) uncertainty due to movement. of ihe
part grasped by the robot. Under such conditions, traditional methods do not perform very
well, and the peg-insertion problem becomes a good candidate for adaptive methods. For
PY;.rplo, in tthe robot we used there is a large discrepancy between the sensed and actual
positions of the peg under an external load similar to what can occur during peg insertion:
whereas the actual change in the peg's position under the external load was on the order of
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2 to 3mm, the largest sensed change in position was less than 0.0t25mm, In comparisi,, the
clearance between the peg and the hole was ft.175mm.

Although it is difficult to design a controller that can robustly perform peg insertiIns

despite the large uncertainty in sensory input, our results indicate that direct reinforcemento
learning can be used to learn a reactive control strategy that works robustly ev'.n in th,
presence of such a high degree of uncertainty. In a 2D version of the task (basically, inserting
a peg into a narrow slot) the controller was consistently able to perform successful ii',rtv'n•
within IlNt time steps after about 150 learning trials. Furthermore. performance as measure'i
by insertion time continued to improve, decreasing continuously over learning trials. The
controller became progressively more skillful at peg insertion with training. Similar results
were obtained in a 3D task although learning took somewhat more trials.

Our experiences with this problem helped develop the following perspective on an im-
portant issue in control. The issue is when to approach a difficult control problem by first
attempting to construct an accurate model of the system being controlled, versus when to
attempt to solve the problem directly, i.e., without such a model. We argue that for some
problems constructing an adequate model is actually more difficult than solving the prob-
lem itself. In robotics, it is a model of the task, e.g.. a manipulation task, that is often
problematic, not a model of the robot itself. Adaptive control methods appealing directly to
the demands of the real task instead of to a model of the task can be very effective in such

problems.

3 Navigation and Steering Control

Navigation and steering control problems provide useful test beds for exploring reinforce-
ment learning algorithms for sequential decision problems. The basic form of these problems
is that some kind of "vehicle" must move to a goal region of its environment while avoiding
obstacles. Learning is used to improve the vehicle's performance with successive trials in
terms of the distance traveled, the time required to reach the goal region, or other criteria.
\Ve have restricted attention to problems in which the environment is static in that it does
not contain moving obstacles or other vehicles. By learning to navigate we mean learning
the direction the vehicle should move from each location in order to reach the goal region
along successively better paths. By learning to "steer," on the other hand, we mean learning
tr -,'p trol a. dynamic vehicle (for example, a vehicle that has mass and inertia), so that it
reaches the goal region via succccsively more efficient trajectories. Often we are only inter-
ested in reaching the goal region in the minimum amount of time. Navigation and steering
control also apply to more abstract spaces, such as the configuration space of a robot ma-
nipulator, instead of two- or three-dimensional cartesian space. Many differ,-n v,-roins ,4i
these problems exist dcpCeUidiL, ,n the sensory and motor capabilities of the vehicle and on
the structure of the underlying space.

Although navigation and steering control have obvious practical applications, we have
used abstract versions of these problems as tools for helping us understand and refine DP-
based reinforcement learning algorithms. However, our work is relevant to realistic examples
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Of these problems, and some of our recent research, as well as research in ,,her r, wtips.
experiments with these methods in actual navigation and steering cnttrl pr(,?,},rns

3.1 Navigation

We developed a navigation test-bed simulating the movement ,f a cylindrical r,, wit lia
sonar belt in a planar environment. This test-bed was first used to study sh',,rl-range li ,,ning
in the presence of, bstacles. that is. going to a "home" place from an arbitrary starting place
within a neighborhood of the home place- The simulated robot has 16 distance sensoirs and
16 grey-scale sensors evenly placed around its perimeter. Thus. the input to, the learning
system at any time is a "sensation" vector of 32 real numbers representing its current view
of the environment. (Other versions of this test-bed used fewer simulated sensors). Tis
contrasts with various "grid-world" navigation problems that we have studied in the past.
and that other groups are studying, in which the robot moves from square to square in a
discretized environment.

This test-bed was used to illustrate the behavior of several DP-based learning architec-
tures. One architecture was developed by J. Bachrach '1: 2. It takes a structured approach to
the problem and utilizes a priori knowledge of how local changes in position tend to change
the robot's view. The homing aspect of the task and the obstacle avoidance aspect are
handled by separate modules, implemented as "adaptive critics" that improve "evaluation
landscapes'" with experience. An evaluation landscape in this case is a real-valued function
4f the space of possible sensations: the higher the value of a sensation, the more the robot
desires to be there. One critic learns to produce a gradually sloping evaluation landscape
with a maximum at the home place. The other critic learns to place evaluation minima
around obstacles. Gradient descent in the evaluation landscape formed by the superposition
of the landscapes implemented by the two critics produces a trajectory that both avoids
,,bstacles and moves towards home. This is related to the technique of potential functions,
hut differs in that it is perceptually-based and involves learning. That is. the evaluatio, n
landscape, which is improved through experience, only evaluates sensations directly; it does
not directly evaluate places in space. Places indirectly receive evaluation according to the
sensations that the robot would receive if it moved to them. Thus, the robot does not have
to maintain a "birds eye" view of the environment. This navigation control architecture
is described in Bachrach's Ph.D. dissertation, completed in 1991. This work was our first
experience with using reinforcement learning in a control scheme that is "behavior-based"
in thi sense of coordinating several different behaviors (homing and obstacle avoidance).

This test-bed was also used to illustrate a modular learning architecture developed by
S. Sinzh 21, that leains several different homing/obstacle avoidance tasks in the same envi-
r,,nment. This is discussed below in the section or. .or1 ular architect,:r.•
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3.2 Steering Control

To study steering control, we adpoted the "race track problem* where a 'orting 13u11
and a finish line are given in a two-dimensional workspace. along with two curves c,-nncrting
corresponding edges of the starting and finish lines. The two curves represent thie tw, silfe
wails of the race track, and the region enclosed by the walls and the starting and finish hics
is the admissible region of the workspace. As a :'vehicle" we basically use a unit mass wit It
fn, damping and stiffness. The controller applies bounded forces at discrete tiine intervals
,n the mass. The objective is to push it from the starting line to the finish line in mninnuni n
time without hitting the walls. Hitting a wall at any point is considered as c,'ntr,oller failure
There are no constraints on the velocity at the finish line. so that any crossing -,f the finish
line is regarded as success. The difficulty of this problem can be adjusted by the selecliti'n
of the race track size and shape. the bound on controller forces, and the mass of the vehicle.
The problem can be made stochastic in a variety of ways.

We began with a version of the race track problem having a continuous state space
The vehicle could occupy a continuum of places and move at an arbitrary velocity On
a simple example of the racetrack problem (turning a single retangular corner). our l)P-
based learning scheme using radial basis functions was able to produce successively faster
times to the finish line by learning to take the corner at increasingly better trajectories, but
learning was very slow. Our research therefore went in two directions: 1) We used a finite-
state racetrack problem to compare our DP-based learning algorithms with the conventional
solution method (conventional DP). This version of the problem satisfies the conditions
required for a convergence theorem we proved. ,31. 2) This problem cries out strongly for the
application of a modular architecture in which different modules are switched in for different
track configurations. This motivated the study of extending the modular architecture Jacobs
8: 91 to apply to this and similar problems. described below.

4 Modular Architectures

Work oin a modular network architecture was begun under the previous AFOSR grant.
This work was completed in the period being reported and formed the basis of the Ph.D.
dissertation of R. A. Jacobs. This is a method for improving the learning ability of arti-
ficial neural networks by organizing several networks into a modular structure [8; 9]. One
advantage of such a structure is that the individual networks are not faced with solving large
problems in their entirety. Large problems are solved by the combined efforts of several
networks. The learning method is a generalization of the unsupervised learning method 4f
c,,mpetitive learning to the supervised case. After Jacobs was awarded the Ph.D. in May
1990!, he worked as a post doctoral researcher at MIT under the direction of Michael Jordan
befo, re taking his current position as Assistant Professor of Psychology at the University
of Rochester. This work has been very influential in the neural network community, and
current work of Jacobs and Jordan continues to develop this basic idea with considerable
success.
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Whereas Jacobs' architecture is for supervised learning, our own rese7arch with mndular
architectures extended Jacobs' ideas to a md:ilar arcliiectirp for rifnfoPr-er#nt 1VarviHi
"[he ideas was to develop a learning architecture which would facilitate transfer 4f learn-
ing among multiple sequential decision tasks. This is important because s,,phisticated an-
tonnious agents will have to learn to solve many different tasks. not just rune: thex slh,,jld
learn t hr, nghout their "lives." While achieving transfer of learning acr(oss an arbitrary s,'1
Of tasks is difficult, or even inmpossible, there are useful and general classes 4f tasks -Wr,'
such transfer is achievable. We focused on extending DP-based reinforcement learning al-
gorithms to compositionally structured sets of sequential decision tasks. Specifically. we
studied learning agents that have to learn to solve a set of sequential decision tasks. where
the more complex tasks, called composite tasks. are formed by temporally concatenating sev-
eral simpler, or elemental, tasks. Learning occurred under the assumption that a compsite
task's decomposition into a sequenc" of elemental tasks was unknown to the learning agent.

Our architecture, called CQ-L, performs compositional Q-learning. where Q-learning is
a DP-based reinforcement learning method proposed by Watkins Jt5: 161. It is a kind of
Monte Carlo DP method for estimating the value of performing various actions hlien the
environment is in various states. These values are stored in a function called the Q-functiln
of the task. CQ-L consists of several Q-learning modules, a gating module, and a bias
module. In different simulations these modules were variously implemented as lookup tables
or as radial basis networks. When trained on a set of compositionally-structured sequential
decision tasks. CQ-L is able to do the following: 1) learn the Q-functions of the elemental
tasks in separate Q-learning modules: 2) determines the decomposition of the composite
tasks in terms of the elemental tasks: 3) learns to construct the Q-functions of the composite
tasks by temporally concatenating the Q-fanctions of the elemental tasks; and 4) learns the
constant biases that are added to the Q-value functions of the elemental tasks to construct
the Q-value function of the composite tasks.

Simulations using the navigation testbed described above showed that CQ-L is able to
learn tasks complex enough to evade solution via a conventional DP-based learning architec-
ture. CQ-L is more powerful than the corventional architecture because it uses solutions of
the elemental tasks as building blocks for solving the composite tasks. Transfer of learning is
achieved by sharing the elemental task solutions across several composite tasks. This is work
of S. P. Singh, a research assistant who has been funded by this grant. Singh has published
several papers on his work [14; 12; 13] and is expected to complete the Ph.D. degree in
the summer of 1993. Singh's work has already been influential in the Al Machine Learning
research community, where increasing attention is being devoted to DP-based reinfrcment
learning as a component of intelligent agents.

5 Abstract Actions

('losely related to our work with modular architectures is our study DP-based learning
with abstract actions. Most applications of DP-based learning described in the literature
use these methods at a very low level. For example, the learning component's actions may
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be primitive movements in a navigation problem, This low level _)f abstracti,,n a-n,er-l',y

prod ices vwry difficult tasks that can be learned only very slwlv. Part ''F ,,ur reqea
effort has been directed toward raiszng the level of abstraction at uhich 1)['-bisa4d it aminq
algor-ithyrs are applied. One way to do this is by letting the learning comp,-nent s arlit,,s bi e
c,,nutr,,Isignals to other system components instead of l,,w-level overt actiuns in thie svsi ems

envir, 'ment. This is one way to incorporate prior knowledge into a learning ysTemnn inn ,rd,'r

I,, improrVe its performance. and it addresses the problem of having the svstem pcrf,,rm
acceptably while it is learning: If a learning system is to learn from its failures. h,,w ,ran
0ne prevent these failures from producing inconvenient, expensive, or catastrr(hic resullts?
This issue, perhaps mcre than any other. has limited the utility of DP-based reinf rcenienn
learning in many real-world applications. One answer is to use reinforcement learning as a
component of a more complex system.

We experimented with a kind of "bahavior based" reinforcement learning in xvhich the
learning component's task is to learn how to coordinate a repertoire of behaviors that have
been hand-crafted to 1) achieve desired goals, and 2) avoid catastrophic failure-. Lparning
the right way to compose these behaviors in a state-dependent manner can imtprve the
system's behavior toward optimality while it is operating adequately. We are currently
applying these ideas to the navigation domain. The abstract actions correspond I,, tw,,
navigatiwn functions that are computed by using the harmonic function approach t,, path-
planning recently developed by Connolly and Grupen. colleagues doing robotics research at
the University of Massachusetts.

In harmonic function path planning, navigation functions are obtained as solutions -f
Laplace's equation (an elliptic partial differential equation) over the relevant robot configu-
ralion space. A navigation function is a function with the property that a robot frilowing
its gradient from any point in space is guaranteed to reach the goal configuration while
avoiding all obstacles. Different boundary conditions of Laplace's equation produce differ-
ent navigation functions. One such function (obtained using Dirichlet boundary conditions)
tends to, repel the robot directly away from obstacles while attracting it to the goal. Another
navigation (obtained using Neumann boundary conditions) tends make the robot "hug" the
,,bstacle boundaries while attracting it to the goal.

We experimented with using DP-based learning to adjust how these functions were com-
bined to-, produce another navigation function enabling the robot to reach the goal much faster
than it could using either function alone. This can be done in such a way that throughout
repeated learning trials, the robot always reaches its goal and never hits an obstacle. Thus
learning can occur on-line while the robot is actually performing its designated task with-
out, risking inadequate performance. Reinforcement learning is used for perfecting skilled
prf,,rmance. not for achieving adequate performance. We think that reinforcement learning
will be most useful in this capacity. We produced successfil demonstrations of these ideas
in simulated environments, and we are currently applying them to an actual GE P-50t rob,.ot
arm
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6 Theory

WVe have made considerable progress in increasing our theoretical understanding [)P-
based reinforcement learning methods and how they relate to other methods. WVe wr,'te an
extensive paper i3'. still under review for .Artificial Intellgence J]ournal), that relaies h,.
learning algorithms to the theory of asynchronous DP '4' and to the heuristic search meth,,d
called Learning Real-Time A* il? This resulted in a convergence theorem for a class,.
DP-based algorithms and clearly articulates the advantages they offer over cnn'enti,,nal
methods for some types of problems. WVe have also begun development of theory in which
some versions of DP-based learning algorithms can be derived as Rnbbins-N,-,nro lyp,-s of

stochastic approximation methods for solving the Bellman optimality equation. We are
currently studying the stochastic approximation literature to derive asymptotic convergenre
results as well as rate of convergence results.

7 Conclusion

The period covered by this grant has seen a remarkable increase in the number of re-
searchers studying DP-based reinforcement learning. This is due in part to increased interest
in the study of embedded autonomous agents. Learning is being widely recognized as an
essentia~l capahability of such agents. and DP-based reinforcement learning is directly ap-
plicable to the kinds of problems such agents face. Our research funded by this and o•ther
grants. as well as the research conducted at other laboratories, is quickly moving these
methods toward becoming standard tools that can be successfully applied to a wide range
o•f problems. While the theory of these algorithms is still underdeveloped, we now have a
much clearer idea of how they are related to more traditional methods of decision theory
and control. WVe are convinced that DP-based reinforcement learning, in all of its varieties.
is a. collection of novel algorithms that will find increasing use in forming useful approxmate
solutions to stochastic sequential decision problems of practical importance.
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[3arnbruum and G.C. Cllins. editors. Machine Learnring" Procodrnq• of ib,, F',1,101

International Wl'orkshop (ML91), Morgan Kaufmann: San Mateo,. ('CA. 1)9l pp.
348-352.

V. Gullapalli. A c,,rnparison of supervised and reinforcement learning in-ot s -ii a
reinf,,rcemnent learning task. Proceedings of the 1991 IEEE International yqmpt-
sium on Inll•thnt Control, Arlington, V\A. August 1991.

V. Gullapalli. Asssociative reinforcement learning of real-vahied func'I.,ns. Pro,,r',hnqz
of the 1991 IEEE International C'onferrnce on Systems. A11,;. and ('ijhcyhrr•b,.

Charlttesville. VA. October 1991.

V. Gullapalli. R. A. Grupen and A. G. Barto. Learning reactive admittance co.ntr,,t
In Proceedings of the 1992 IEEE Conference on Robotics and Automat•on. Nicul.
France, May 1992.

S. P. Singh. Scaling reinforcement learning algorithms by learning variable ternpral
resolution models. In Proceedings of the Ninth Machine Learning Confcrence.
Aberdeen. Scotland, 1992. Morgan Kaufmann. pp. 406-415.

V Cullapalli. Associative reinforcement learning of real-valued functions. Prorcdings
of the 1991 IEEE Internatzonal Conference on Systems. Alan, and Cybrrnf•r s,
('harlottesville. VA. October 1991.

S. P. Singh. Reinforcement learning with a hierarchy of abstract models. In Prncred-
ings of the Tenth Natzonal Conference on Artificial Intelhgenc,. (A.4AI-92), San
Jse. CA. July 1992. AAAI Press MIT Press, pp. 202-207.

S. P. Singh. The efficient learning of multiple sequential tasks. In J.E. Moody, S.J.
Hanson and R.P. Lippman, editors, Advances in Neural Informatzon Procfssing
4. Morgan Kaufmann: San Mateo, CA, 1992, pp. 251-258.

.\. C. Barto and S. J. Bradtke. Learning to solve stochastic optimal path problems
using real-time dynamic programming. Proceedings of the Seventh 1.ale Workshop
on Adaptive and Learning Systems, New Haven. CT, May 1992.

V. Gullapalli. Robust control under extreme uncertainty. In Neural Information
Processing Systems 5, Morgan Kaufmann: San Mateo, CA, to appear.

S. J. Bradtke. Reinforcement learning applied to linear quadratic regulation. In
Neural Information Processing Systems .5, Morgan Kaufmann: San Mateo. CA.
to appear.

Book chapters published

A. G. Barto and S. P. Singh. Reinforcement learning and dynamic programming. In
Proceedings of the 5izth Yale lW'orkshop on Adaptive and Ltarniia Sysferms. held
August 15-17. 1990 in New Haven, CT.

A. C. Barto and S. P. Singh. On the computational economics of reinforcerment
learning. In D.S. Touretzky, J.L. Elman, T.J. Sejnowski and G.E. Hinton, edit,,rs,
Proreedings of the 1990 Connectionist Models Sumnmfr School. San Mateo. (CA:
Morgan Kaufmann, 1990. pp. 35-44.
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V. (,iullapalli. Modeling cortical area 7a using stochastic real. valtid(SlVI i isI

[).S. Touretzkv. J. L. Elman, TiJ. Sejnowvski and (-C F h~ii-t neit'r,~P
ings, of the 1990 ('onnrctionist Models Summer Srhnol. San Nlateo.ý ('A N1,rgali
Kauifmann. 1990-

Hi. S. Sut ton and A.\ G. Barto. Time-derivative rn dl 4 Pav! ''ian reint--mn
In Lr-arrtinq and ('omputatzonal Voiroscientc-. NJ. ( ;abriel and JNr. dI ~
The MIT Press, Cambridge. MA. 19911, pp 4971-537.

A\.G_ Bart,-.. Some learning tasks from a control perspective In L N~del aTnd D) St-11n
edfliors. 1990 Lectures in. Complex S5ystems. A ddiso n -Wesle~y. 1991 pp 195-223

R S. Sutton. A. G. Barto, and R. J. Williams. Reinforcement le-arnilng i5 direcrt

adaptive optimal control. Proceedings of the 1991 American Contrrl (,frne

June 26-28. Boston. MIA. pp. 2143-2146.

V. (lullapalli. Dynamic svstems control via associative reinforcement learning. In H
S(oucek. editor. Dynamic, Genetic, and C'haotic Programming: Thr .5zxth (nr
atbon. New York. NY: John Wiley &' Sons. 1992.

A. G. Barto. Reinfo-cement learning and adaptive critic methods. In Handbook of
Intellient Control. DA. White and D A. Sofge. editors. New York: Van N-s~tranid
Relinhold. 1992. pp. 469-491.

Technical reports

Aý G. Barto-. S. J Bradtke and S. P. Singh. Real-time learning and conitrri, using
asynvichronious dynamic programming. Technical Report 91-57. Computer Scienice
Dept.. University of Massachusetts. Amherst. A'ugust 1991. (Su!)niltted to) 'rti-

ficnal Int(dligence Journal.)

A.. G. Barto and V. Cullapalli. Neural networks and adaptive control. NPB Technical
Report 6. Center for Neuroscience Research on Neuronal Populations and Behav-
ior. Northwestern U:niversity. 'March 1992. 'To appear in P. Rudomin, .A. Ar-

bib and F. Cervantes- Perez, editors. Vatural and .Artifictal Intelligence, Research
Notes in Neural Computation, Springer-Verlag (in press)."

R. Yee. Abstraction in control learning. COINS Technical Report 92-16, University
of Massachusetts. March 1992.

A. G. Barto. S. J. Bradtke and S. P. Sinigh. Learning to act using real-time dynamic
programming. C*MPSCI Technical Report 93-02, .71 niversity of Massachtisot tr.

January 1993. (Supercedes TR 91-57.) Submitted to .A1 Journal,
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Graduate students

Jonathan Bachrach
Robert Crites
Vijaykumar Gullapalli
Robert Jacobs
Satinder Singh
Richard Yee

Theses produced:

R. A. Jacobs. Task Decomposition Through Competition in a Modtilar (Y, necti-n-

ist Architecture. (Ph.D. Thesis) COINS Technical Report 90-44, University of Mas-
sachusetts at Amherst. May 1990.

J. R. Bachrach. Connectionist Modeling and Control of Finite State Environments.
(Ph.D. Thesis) COINS Technical Report 92-6, University of Massachusetts, Amherst.
January 1992.

V. Gullapalli, Reinforcement Learning and its Application to Control. (Ph.D. Thesis)
COINS Technical Report 92-10. University of Massachusetts, Amherst. January 1992.

External honors, etc.

Andrew G. Barto became a Senior Fellow of IEEE.

Andrew G. Barto gave an invited plenary address entitled "Learning to Act: A Per-
spective from Control Theory" at the Tenth Annual Meeting of the American
Association for Artificial Intelligence (AAAI-92) at San Jose, CA, July 15. 1992.

Andrew G. Barto gave the invited plenary lecture, entitled "Reinforcement Learning,"
at the 1992 Conference on Learning Theory at the University of Pittsburgh, July
27, 1992.
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